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Abstract. We consider in this paper the Lagrangian dual method for solving general integer
programming. New properties of Lagrangian duality are derived by a means of perturba-
tion analysis. In particular, a necessary and sufficient condition for a primal optimal solu-
tion to be generated by the Lagrangian relaxation is obtained. The solution properties of
Lagrangian relaxation problem are studied systematically. To overcome the difficulties caused
by duality gap between the primal problem and the dual problem, we introduce an equiva-
lent reformulation for the primal problem via applying a pth power to the constraints. We
prove that this reformulation possesses an asymptotic strong duality property. Primal feasi-
bility and primal optimality of the Lagrangian relaxation problems can be achieved in this
reformulation when the parameter p is larger than a threshold value, thus ensuring the exis-
tence of an optimal primal-dual pair. We further show that duality gap for this partial pth
power reformulation is a strictly decreasing function of p in the case of a single constraint.

Key words: asymptotic strong duality, integer programming, Lagrangian duality, pth power
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1. Introduction

The general integer programming problem we address in this paper is of
the following form:

(P) min f(x)
st. g(x)<b;, i=1,...,m, (1
xeX,

where f and g;’s are continuous functions and X is a finite integer set in
R”™.
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By associating with the ith constraint in (P) a nonnegative A;,i =
1,2,...,m, the Lagrangian function of (P) is defined as:

Lx,)=f@)+ Y hi(gi(x)—b), (2)

i=1
where A= (A1, A2, ..., Ayn)". The Lagrangian relaxation of (P) is given by
(L3) d()»)=mi}1(lL(X,)x)- (3)
X€E
Let

S={xeX|gx)<b;, i=1,...,m},

f*=min f(x).
xes
Since d(A) < f(x),Vx € S,VA >0, weak duality relation always holds:
f*=d®), Vix=0. “4)

The Lagrangian dual problem of (P) is then to search for a multiplier vec-
tor A* >0 which maximizes d(A) for all A >0:

(D) d(A*)=maxd(). ®))
A=0

Lagrangian methods for linear integer programming have been exten-
sively studied in the literature (see e.g., Bell and Shapiro (1977), Fisher
and Shapiro (1974), Fisher (1981), Geoffrion (1974) and Nemhauser and
Wolsey (1988)). A survey of the use of Lagrangian techniques in integer
programming can be found in Shapiro (1979). Lagrangian relaxation and
decomposition methods have been also investigated in nonlinear integer
programming (see e.g. Guignard and Kim (1987), Michelon and Macu-
lan (1991, 1993)). In most situations, the Lagrangian dual problem (D) is
unable to provide an optimal solution, or even a feasible solution, to the
primal problem (P) due to the presence of a duality gap. Holmberg (1994),
Williams (1996) and Wolsey (1981) studied the duality theory in linear inte-
ger programming. A geometric study of duality gaps in general integer pro-
gramming was given in Lemaréchal and Renaud (2001). Dentcheva and
Romisch (2004) and Sen et al. (2000) investigated duality gaps in integer
stochastic programming. Duality theory was also discussed in the context
of discrete convex analysis (Murota (1998)).
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If an optimal solution x* to (P) can be produced by solving (L;) with
A=X\* then we say that A* is an optimal generating multiplier (OGM) vec-
tor of (P) for x* (Li and White (2000)). Let g(x) = (g1(x), ..., gn(x)T.
Denote by E the map of set X under the mapping x — (g(x), f(x)), i.e.,

E={(y,2)=(g(x), f(x)) eR™" |x e X}. (6)

Geometrically, the existence of an OGM vector for x* is equivalent to the
existence of a supporting plane to set E at (g(x*), f(x*)). The existence of
the supporting plane, however, could not be guaranteed in general in the
Lagrangian formulation (1)—(5) as demonstrated by the following example.

EXAMPLE 1.

min f(x) =44+ x1x0x3x4 —x1 +3x2+x3 — 2x4
s.t. g1(x)=x1 —2x+x3+3<D,
xeX={0, 1}*

Take b=2.5. Figure 1 illustrates set E of Example 1. We can see from Fig-
ure 1 that point (2,4), the map of (1, 1,0, 1)7, has the lowest value of f(x)
among the points in E located on the left of line y=2.5. Thus the optimal
solution of this example is x*=(1,1,0, )" with f(x*)=4. However, there
does not exist an OGM vector for x* as no line with slope —A(A >0) can
support the set E at (2,4).

Another fundamental question is whether an OGM vector is necessarily
an optimal solution to the dual problem (D). It turns out that the answer
is also negative in general as will be shown by Example 2 in Section 3.

If the dual optimal solution A* is an OGM vector for an optimal solu-
tion x* to (P), then (x*, A*) is said to be an optimal primal-dual pair of (P)
(Li and White (2000)). It is clear that the existence of an optimal primal-
dual pair provides a platform for the success of dual search. A well-known
sufficient condition (see Shapiro (1979)) for strong duality (zero duality
gap) can be stated as follows. If there exists a pair (x*, A*) with x*€ X and
A* >0 such that

d(A*)=L(x*, 1), (7
A(gi(x")—b)=0, i=1,...,m, (8)
gL, i=1,...,m, 9)

then (x*,1*) is an optimal primal-dual pair of (P) and strong dual-
ity holds: f(x*) = d(A*). In contrast to its counterpart in continuous
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8t . 1
7+ . o E={(9,(x).f(x))Ixe X} T

Figure 1. Tllustration of set E in Example 1 with b=2.5.

optimization, the complementary slack condition (8) rarely holds true for
an optimal solution of integer programming since the constraint g;(x) <b;
is often inactive at x* for index i with A} > 0.

The goal of this paper is twofold. First, we establish some new prop-
erties of Lagrangian duality theory for general integer programming by a
means of perturbation analysis. Based on the relationship between dual-
ity and the perturbation function, a necessary and sufficient condition
for the existence of an OGM vector of (P) is derived. Solution prop-
erties of the Lagrangian relaxation problem are investigated systemati-
cally. Second, we propose a new approach to ensure the existence of an
optimal primal-dual pair via a partial pth power equivalent reformula-
tion of the original problem. This reformulation is formed by applying a
pth power transformation to the constraints. It is proved that the exis-
tence of an optimal primal-dual pair and an asymptotic strong duality can
be assured in this partial pth power reformulation. The idea of using a
pth power transformation was first introduced in Li (1995) to achieve a
zero duality gap for nonconvex continuous optimization problems. The pth
power Lagrangian was proposed for general nonlinear integer program-
ming in Li and White (2000) and Li and Sun (2000). Although the exis-
tence of an OGM can be guaranteed in the pth power formulation of
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Li and White (2000) and Li and Sun (2000), primal feasibility and exis-
tence of the primal-dual pair can be assured only for singly constrained
cases resulted from applying a nonlinear surrogate constraint method in
Li (1999). An alternative Lagrangian formulation of a logarithmic-expo-
nential type for integer programming was investigated in Sun and Li
(2000). Similarly, primal feasibility and the existence of the primal-dual
pair can only be proved in the logarithmic-exponential-type nonlinear
Lagrangian formulation for singly constrained cases. The most prominent
contribution of this paper in nonlinear Lagrangian theory is an assur-
ance of primal feasibility and the existence of the primal-dual pair in
the proposed partial pth power Lagrangian formulation for general mul-
tiply constrained situations. The results obtained in this paper should
better our understanding of the primal-dual methods for general integer
programming.

The organization of the paper is as follows. In Section 2 we analyze
the relationship between the Lagrangian duality and the perturbation func-
tion for integer programming. New results are derived to characterize the
OGM vector and primal-dual pair. In Section 3 we establish new solu-
tion properties for the Lagrangian problem (L), where 1* is the dual opti-
mum. In particular, primal feasibility and primal optimality of optimal
solutions to (L;-) are addressed. To achieve an asymptotic strong duality
we introduce in Section 4 a partial pth power reformulation of (P). This
partial pth power Lagrangian formulation ensures the existence of a pri-
mal-dual pair when p is sufficiently large. The decreasing monotonicity of
duality gap in the partial pth power formulation is proved in Section 5 for
the single-constraint case of (P). Finally, we give concluding remarks in
Section 6.

2. Duality and Perturbation Function

In this section we establish some basic properties of the perturbation func-
tion of (P) and investigate the relationship between the perturbation func-
tion and the Lagrangian duality.

We make the following assumption on problem (P):

ASSUMPTION 1. S#0 and there is at least one x € X \ S such that f(x) < f*.

Assumption 1 ensures that the problem (P) is feasible and cannot be
trivially reduced to an unconstrained integer programming problem.

For any vectors x and ye R", x <y iff x;<y;,i=1,...,m. A function
h(x) defined on R™ is said to be nonincreasing if for any x and y e R”, x <
y implies h(x) = h(y).
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Let b=(by,...,b,)T. The perturbation function of (P) is defined as
w(y)=min{f(x)|gx) <y, x€X}. (10)
The domain of w is
Y ={y e R"|there exists x € X such that g(x) < y}.

Note that Y is not always a convex set. The perturbation function w
can be extended to the convex hull of Y by defining w(y) =+o0 for y e
conv(Y)\Y.

By definition (10), w(g(x)) < f(x) for any x € X and w(b) = f*. Further-
more, w is a nonincreasing and piecewise constant (+o0) function of y on
conv(Y). In a process of increasing y, if there is a new point x € X such
that f(x) <w(y) for any ye{zeY |z<g(X), z#g(x)}, the perturbation
function w has a downward jump at y=g(x). The point g(X) correspond-
ing to this new point X is called a corner point of the perturbation func-
tion w in the y space. Since f and g;’s are continuous functions and X
is a finite integer set, there are only finite number of corner points, say K
corner points, ¢y, ca,...,ckx. Let fi=w(¢;),i=1,..., K. Define the sets of
corner points in y space and {y, w(y)} space by

C={ci=(ci1,Ci2o - cim) li=1,... K},
S, ={(c, fi)li=1,...,K},
respectively. From the definition of the corner point, (y, w(y)) € @, iff for
any z €Y satisfying z<y and z#y, it holds w(z) > w(y).
By the definition of w, []/-;[yi, +00) CY if yeY. Let ¢ denote the ith

unit vector in R”. Then, ¢'’s are the extreme directions of conv(Y). Also,
the set of extreme points of conv(Y) is a subset of C. Denote

K
A=[MGRK|ZM=1, 11 >0, i=1,...,K].
i=1

The convex hull of Y can be expressed as

K m
conV(Y)=[Zuici+2a,~ei|ueA, o; =20, i=1,... ,m]
i=1

i=1

K
={yly=) wci, peA). (11)
i=1
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From the definition of the corner point, the domain Y can be decom-
posed into K subsets with each ¢; as the lower end of each subset Y;. More
specifically, we have Y =UX Y, with ¢;; =min{y; |y€Y;},j=1,... ,m, and
w takes a constant f; over Y;:

wy)=fi, VYyeY, i=1,... K. (12)

Note that some Y; may not be a single rectangular strip and there may
exist different Y;’s on which w(y) takes the same value. Define

O={(y,w(y))|yeY}.

By the definition of Y;, ¢; €Y; and w(c;) = f; for each i. Thus &, C ®. Also,
by the definition of E (cf. (6)), we have ®.C E.

Consider an example of (P) with f(x) =3 — x; — xp — x1x2, g1(x) =
x1,g2(x) = x2, and X ={(0,0)", (0, DT, (1, D7, (0,2)", (2,007, (2,2)"}. By
definition, we have

[0,2) x[0,1), 1=(0,0)", fi=
[0,)x[1,2), =0,D", fi=

[0,1) x[2, +00), ¢3=(0, nT, =1,
2,

[

[

+00) x [0, 1), c4a=R2,007, fi=1,
1,2) x[1,+00)U[l, +00) x[1,2), cs=(1, DT, fs=
2,400) x[2,400), cs=(2,2)", fe=-5

We see that Ys is not a single rectangular strip and w takes the same value
of 1 over Y3 and Y4. Figure 2 illustrates the perturbation function of this
example.

A point x € X is said to be noninferior if there is no x € X with w(g(x))=
w(g(x)) such that g(x) <g(x) and g(x) #g(x). The following lemma shows
some useful properties of the perturbation function. Most importantly, the
lemma proves that any noninferior optimal solution of (P) is correspond-
ing to a corner point.

LEMMA 1. (i) For any yeY, if xy solves the perturbation problem
w(y)=min{f(x)|g(x) <y, x€X},
then (g(x,), f(x,)) € .

(i) For any c; € C, there exists x € X such that (c;, f;) =(g(x), f(x)) € D,.
(iii) For amy noninferior optimal solution x* to (P), (g(x*), f(x*)) € ®..
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Figure 2. Tllustration of perturbation function w and decomposition of Y.

(iv) If be Yy for some ke{l, ..., K}, then f*= fi and any optimal solution
to the perturbation problem

w(cy) =min{f(x)|g(x) <, x€X}

is a noninferior optimal solution to (P).
(v) For any X >0, there exists x; € X that solves (L)) and satisfies
(g(x1), f(x3)) € Pe.

Proof. (1) Since g(x,) <y and w is a nonincreasing function, we have
fxy)=w(y) <w(g(x,)). On the other hand, since x, is feasible in the per-
turbation problem

w(g(xy))=min{f(x)|g(x) <g(xy), x€X},

we have w(g(xy)) < f(x,). Thus, w(g(xy)) = f(xy), 1.e., (g(xy), f(xy)) €.
(i1) Suppose that x solves the perturbation problem w(c;) = min{f(x) |
gx)<c¢i, xeX}, then f(x)=w(c;))=f; and g(x) <c¢;. By part (i), we have
(g(x), f(X)) € ®. It then follows from the definition of ¢; that g(¥)=¢; and
so (g(x), f(X)=(ci, fi).
(iii) By part (i), we have (g(x*), f(x*)) € ®. Let z€Y be such that z <
g(x*) and z# g(x*). Suppose that x solves the perturbation problem

w(z)=min{f(x)|g(x) <z, x € X}.
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Then w(z) = f(x) and g(x) <z < g(x*) with g(x) # g(x*). Since x* is a
noninferior optimal solution, we must have w(z) = f(x) > f(x*) =w(g(x*)).
Thus (g(x*), f(x*)) € ®..

(iv) Suppose that x* solves the problem w(cy) =min{f(x)|gx)<ck, X €
X}. Then, by (12), f*=w®)=w(cx) = fi=f(x*). So x* is an optimal solu-
tion to (P). If there exists another optimal solution x to (P) such that
g(x¥)<g(x*) and g(x)#g(x*), then g(x) <g(x*) <cp <b and g(x) #cy. Since
(ck, fr) 18 a corner point and w(y) is a nonincreasing function, we have

F) Z2w(g() >wlc) = fi=f (),

which contradicts to the optimality of x. Therefore, x* is a noninferior
optimal solution of (P).

(v) Let x € X be an optimal solution to (L;). We claim that f(x)=
w(g(x)). Otherwise, f(x) > w(g(x)). Let ¥ € X solve min{f(x) | g(x) <
g(x), xe€X}. Then g(x)<g(x) and f(x)>w(g(x))= f(x). We have

LE M) =fE)+1(g(F) =b) < f(X) +1T (g(X) =b) =L (X, 1),

which contradicts the optimality of x to (L;). Now, let g(x) € Y, for some
ke{l,...,K}. Then ¢; < g(x). By part (ii), there exists x; € X such that
(k> fi) = (8(x2), f(x:)). By (12), f(x1) = fi = w(cr) = w(g(x)) = f(x). We

have L(x;, 1) <L(x,2) and hence x; is also an optimal solution to (L;) and
(g(x1), f(x1)) € De. O

Let epi(w) denote the epigraph of w:
epi(w) ={(y,2) [z=w(y), yeconv(Y)}. (13)

Note that f; =w(c),i=1,...,K. By (11) and (13), the convex hull of
epi(w), conv(epi(w)), can be expressed as

K K
conv(epi(w)) = {(y, (.22 (Z HiCi Zmﬁ) € A} : (14)

i=1 i=1

Define the convex envelope function of w on conv(Y):

¥ (y) =min{z | (y, z) € conv(epi(w))}. (15)
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By expression (14), (15) is equivalent to
K
Y(y)=min Y ufi
i=1

K
s.t. Zﬂici <Y, (16)
i=1

K
ZM[ZI, /"Ll>07 lzl»vK
i=1

The dual problem of (16) is

¥ (y) =max —kTy+r (17)
st. —Alei+r<fi, i=1,...,K,
A>0, reR.

We see from (17) that ¢ is a nonincreasing piecewise linear convex func-
tion on conv(Y). By definitions (13) and (15), it holds

w(y) =¥ (y), yeconv(Y). (18)

The dual expression of i in (17) also indicates that i is the greatest con-
vex function majored by w.

THEOREM 1. Let u* and (—A*,r*) be optimal solutions to (16) and (17)
with y=>b, respectively. Then

(1) A* is an optimal solution to the dual problem (D) and

Y (b)=maxd(L) =d(1¥).
A>0

(1) For each i with u; >0, any x € X satisfying (g(x), f(X))=(c;, fi) is an
optimal solution to the Lagrangian problem (L;-).

Proof. (i) For any A >0, by Lemma 1 (v), there exists je{l,..., K} such
that

migL(x,A):min{fi +2T(ci=b)li=1,...,K}=f;+A1"(c; = D).
xXe
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Let ri=f;+A"c;, then fi+ATc;>r,, i=1,...,K. Thus

max d(A) =maxmin L(x, 1)
2>0 A>0 xeX

=max(—A"b+ry)
A0

= max {-ATb+r|fi+ATe;>r, i=1,...,K}.
1>0, reR

= max {—ka+r|—ATci+r§ﬂ, i=1,...,K}. (19)
A>0, reR

On the other hand, by (17), we have

v(b)=max —ATb+r
st. —ATei+r<fi, i=1,... K, (20)
A>=0, reR.

Combining (19) with (20) leads to

¥ (b) =maxd (L) =d(A*).
2=>0

Thus A* is a dual optimal solution.
(i1) By the complementary slackness condition of linear program (20), we
have

w(=2Tei+r* = fi1=0, i=1,... K.
So for each u} >0, it holds r*= f; + (A*)"¢;. Hence
AW )=y b)=(=1)"b+r*= f; + (W) (c; — b). 21
By Lemma 1 there exists x € X such that (g(x), f(x))={(c;, f;). It then fol-
lows from (21) that d(A*) = L(x, A*), which means X is an optimal solution
to (LA*). Il
We point out that part (i) of Theorem 1 was obtained before in Li and
White (2000) and Lemaréchal and Renaud (2001), using different proofs.

The following theorem characterizes a necessary and sufficient condition
for the existence of an OGM vector of (P).

THEOREM 2. Let x* be an optimal solution to (P). Then there exists an
OGM vector for x* if and only if w(g(x*))=v(g(x™*)).
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Proof. Let —A* <0 be a subgradient of v at g(x*) €Y. We have

Y 2P+ (=1 (y—g(x*), VyeY. (22)

For any x € X, setting y=g(x) €Y in (22) and using (18), we get

F)Zw(g(0)) =¥ (g(0)) =¥ (g(x)) + (=15 (g(x) — g (x*)). (23)

Since x* is an optimal solution to (P), from Lemma 1 (i), we have f(x*)=
w(g(x*)). If the condition w(g(x*))=v(g(x*)) holds, then we deduce from
(23) that

FO+0H (gx)=b) = fFH+0H (g(x") —b), VxeX, (24)

which means x* is an optimal solution to (L;:) and hence A* is an OGM
vector for x*.

Conversely, if there exists an OGM vector A* >0 for x*, then (24) holds.
For any y eV, there exists x € X satisfying f(x)=w(y) and g(x) <y. From
(24), we have

w(y) = f(x)
> £ — 09 (g(x) — g(x™))
> w(g(x*) — W) (y — g(x*)) (25)

for all yeY. Recall that ¢ is the greatest convex function majorized by w.
We therefore deduce from (25) that

Y ZwEgx)) -0 (y—gx*), VyeY.

Letting y = g(x*) in the above inequality yields v (g(x*)) = w(g(x*)).
Together with (18), this implies w(g(x*)) =¥ (g(x*)). O

COROLLARY 1. Let x* be a noninferior optimal solution to (P). If all cor-
ner points are on the convex envelope function, i.e.,

ve=rfi, i=1,...,K, (26)

then there exists an OGM vector for x*.

Proof. From Lemma 1 (iii), (g(x*), f(x*)) € .. By the assumption,
Y(g(x*) = f(x*) = w(g(x*)). The conclusion then follows from Theo-
rem 2. O
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The following example, however, shows that condition (26) is not enough
to guarantee the existence of an optimal primal-dual pair of (P).

EXAMPLE 2.

min —3./x; —2x;

s.t. x1 <5,
X2 <5,
xeX={1dH", 227,65, D 6,9, 09,7

The optimal solution of this problem is x* = (1,4)7 with f(x*)=—11.
The corner points are (c;, f;),i=1,...,5, with c; =(1,47, fi=—11, cr=
2,27, ,=—8.2426,c3=(5,77T, f3=-20.7082, cs = (8, 8)7, f4 = —24.4853,
cs=(9,77, fs=—23. The optimal dual solution to (D) of this problem
is A* =(0.57287,2.14946)" with d(A*) = —16.4095. There are three optimal
solutions to the Lagrangian problem (L;-): (2,2)7, (5,7)" and (9, 7)T, among
which only (2,2)7 is feasible. However, (2,2)7 with £((2,2)7)=-8.2426 is
not an optimal solution to the primal problem. Hence there is no optimal
primal-dual pair in this problem. We can verify, however, condition (26) is
satisfied and A =(1.01311, 1.88524)7 is an OGM vector for x* = (1,4)”. This
example also shows that an OGM vector is not necessarily an optimal solu-
tion to the dual problem (D).

In the following, we consider the existence of an optimal primal-
dual pair in single-constraint cases of (P). Notice that the corner point set
®.={(c;, f)|i=1,...,K}) now is a set in R?> and by the monotonicity
of w we can assume without loss of generality that ¢; <c¢; <---<cg and
fi>fr>---> fx. The domain of w is Y =[cy, +00).

Define the envelope function of w in singly constrained cases as

fi+&(y—c), ca<y<ac
frt+&(y—c), a<y<c

dO)=1 ... " 27)
fr—1+&k_1(y —ckx-1), ck—1<y<ck
fx» cx <y <00

where
L S [ T T S ) (28)
Cit1 —Ci

It is clear that ¢ is a convex function if and only if & <& <---<&g_;.
We have the following theorem.
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THEOREM 3. Suppose that m=1 and ¢ is convex on Y =|[cy, +00). If x*
is a noninferior optimal solution to (P), then there exists A* >0 such that
(x*, \*) is an optimal primal-dual pair of (P).

Proof. By Assumption 1 and Lemma 1 (ii), there exists ke{l,..., K — 1}
satisfying b € [k, cxy1) and (g(x™®), f(x™)) = (¢, fr) € Pe. Let A* =—§&,.. We
first prove that x* solves problem (L;:). Since & is a subgradient of ¢ at
y=g((x*)=c, we have

w() Z¢(y) ZP(g(x™)) +&(y —g(x™)
=f(N)+&(—g(x"), Vye Y. (29)

For any x € X, let y=g(x). It follows from (29) that

FE)ZwEG))=wy) = f@x") +&0—g(x")
=f (") +&(g(x) —g(x),

which in turn yields

L(x,2%)=f(x)+A"(g(x) —b)
2 [+ A" (g(x") = b)=L(x",17). (30)

Thus x* solves (Ly+). Next, we prove that A* solves the dual problem (D).
For any fixed A >0, suppose that x; solves (L;). Thus, L(xy,A) < L(x, 1),
for any x € X. Then, for (¢;, f;),i =k,k+1, we have

fiz o) —Aiei—g(x), i=kk+1. (31D

Also, since b € [ci, crs1), there exists a w € (0,1] such that b = uc+
(1 —w)crs1. We thus obtain from (27), (28) and (31) that

d()=min L(x, \%)
xeX

=f(x") =& (g(x™) —b)
= fi— M[Ck — (uer+ (1= pers1)]
Ck+1 — Ck

= wfie+ (1= ) firr

2 ulf () = Aler — g o))+ (1L — [ f () — Alcrr1 — g(xa)]
= f(x) +A(g(x) —b)

=rxrg)r(1 L(x,A)

—d().

Hence A* solves (D). Therefore, (x*, A*) is an optimal primal-dual pair of
(P). O
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3. Solution Properties of Lagrangian Problems

In this section, we focus on the solution properties of Lagrangian relaxa-
tion problem (Lj~):

d(\") =mi}1{1 L(x, )%, (32)

where A* is an optimal solution to the dual problem (D).

A key question arises from the problem (L;:): Is there always an opti-
mal solution to (L;+) which is feasible in the primal problem? The answer
is negative in general situations as shown in the following example.

EXAMPLE 3.

min f(x)=3x;+2x;— 1.5x12

s.t. g1(x) =+/15 = Tx1 +2x2 <23,

o) = 15—|—2xl2 —Tx> <2\/§,

xeX={0,DT, 0,27, 1,07, (1, DT, 2 0T, 2, 27).

The optimal solution of the problem is x* = (1,1)” with f(x*) = 3.5.
The optimal solution to the dual problem (D) is A* = (0,1.0166)7 with
d(0*) = 1.3538. The Lagrangian relaxation problem (L;) with A = A*
has two optimal solutions: (0,1)7,(2,0)", none of which is feasible.
Notice that the problem has only two feasible solutions (1,1)” and
2,27,

Nevertheless, we will show that the primal feasibility of problem (L;)
can be always achieved in single-constraint cases.

THEOREM 4. If m =1, then there exists at least one optimal solution to
the Lagrangian problem (L,-) which is feasible in the primal problem.

Proof. Suppose on the contrary there is no feasible optimal solution to
(Ly+). Then

L(x,A")>L(x*, 1%, Vxes, (33)

where x* € X\ S is an optimal solution to (L;-) which is infeasible in the
primal problem. Let

§ —min L @D (34)
xeS g(x*) —g(x)
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Then by (33), we have A >1*. Let x € S be such that

L(i,i):migL(x,X). (35)

Now for any x € X\, since g(x) —b >0, we have

L(x, )= f(x)+A(g(x) —b) > f(x)+1*(g(x) —b)
= L(x, ") = L(x*, A"). (36)

On the other hand, for any x € S, by (34) and (35), we have

L(x,A\)>L(%, 1)
—fO+IE® -0
= [0+ (g (D) — gx") +A(g(x") —b)
> 1@+ L0 6y o) + R —b)
20— g(®)
> FO) A (2" —b)
— L(x*, 1Y). (37)

Combining (36) with (37), we infer that
d()i):mi)r(lL(x,i) >L(x*, A =d(\Y),
xXe
which contradicts the optimality of A*. O

Interestingly, the following theorem and corollary reveal that the primal
infeasibility is assured for at least one optimal solution to (L;:) in gen-
eral situations, including both singly constrained and multiply constrained
cases, where there exists a nonzero duality gap.

THEOREM 5. Assume that ¥ (y) <w(y) for some y € conv(Y). Let u* be
an optimal solution to (16). Then there is at least an i €{l, ..., K} such that
wi>0 and c; e C with c¢; £ y.

Proof. For a yeY, by (16), there exists u* € A that solves the following
problem:

Y(y)=min Y[ w; fi, 39)
s.t. Zlel wic; <y, HEA.

Let I ={i|u}>0}. Suppose that ¢; <y for all i e /. We claim that f, = f;
for any k,l € I. Otherwise, suppose that f; > f; for some k,/ € I. Define
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i=C(it1, ..., jig) as follows: f; =}, if i #k and i #[; and fix=p; —e€, ;=
uj +e€, with € >0 being small enough that ji; > 0.

Note that g€ A and ;=0 iff u7=0. Since by assumption ¢; <y for all
i €l, it follows that Zlel fici =3 iy lici <Y ;o; iiy=y. Thus, i is feasi-
ble to problem (38). Moreover,

K
Y i fi =l fy=e(fi— fi) <0,

i=1

which contradicts that u* is an optimal solution to (38). Therefore, f; =
fi for any k,lel. It then follows that ¥ (y)= f; for any i € I. Since ¢; <y
for all i e I, w(c;) > w(y). Thus, ¥(y) = fi =w(c;) > w(y), contradicting the
assumption that ¥ (y) <w(y). O

COROLLARY 2. Assume that the duality gap between (P) and (D) is
nonzero, i.e., d(\*) < f*. Then there is at least one optimal solution to the
Lagrangian problem (L;:) which is infeasible in the primal problem.

Proof- Notice from Theorem 1 (i) that ¥ (b) =d(A*). Thus, ¥ (b) < f* =
w(b). Applying Theorem 5 with y=5, we conclude that there exists an i € /
such that ¢; £b. Let x be such that (g(x), f(x))=(c;, f;). Then x is infea-
sible and by Theorem 1 (ii), x solves (Lj-). O

4. pth Power Reformulation

In this section we introduce a new partial pth power reformulation of
(P). Based on the results obtained in the previous sections, we show that
this partial pth power reformulation possesses an asymptotic strong duality
property and can guarantee the existence of an optimal primal-dual pair,
thus providing a platform for the success of dual search for the reformu-
lated problem. Without loss of generality, we can assume the following.

ASSUMPTION 2. The functions g;’s are strictly positive over X and b; >0
for all i.

Notice that Assumption 2 can be always satisfied via some suitable equiv-
alent transformations for (P).

_For any yeR! and p >0, denote by y” the vector 7, ..., ymT. Con-
sider the following equivalent reformulation of (P):

min f(x)
(39)
s.t. [g(x)]P<b?, xeX.
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The Lagrangian relaxation of (39) is

dp(M)=min L, (x, %), (40)

where L,(x, )= f(x)+AT{[g(x)]” —b”}. The dual problem of (39) is

0(p)=max d, (). (41)

The pth power dual formulation was introduced previously in Li and
White (2000) and Li and Sun (2000) where pth power is imposed on both
objective and constraint functions. Formulation (39) can be viewed as a
partial pth power reformulation. In the following, the results obtained in
the previous sections will be applied to (39)-(41). Denote by w, the per-
turbation function of (39):

w,(y) =min{f(x) [[g®)]" <y, xeX}.

It is clear that the domain of w, is Y,={y”|yeY} and w,(y”)=w(y) for
any y € Y. Moreover, the corner point set of w), is {(c/, fi)|i=1,...,K}.

Let v, denote the convex envelope function of w,. Then, by (16), ¥,(y)
can be expressed as

Y,() =min YK ui(p)f;

) 42)
st. Y ui(p)el <y, p(p) €A.

Let veY and u(p)€ A for any p > 0. Define the following index sets:

Lp)={ie{l,... ., K} ni(p)>0, c;i<v}, (44)
L(p)=1(p)\Ii(p). (45)

LEMMA 2. Let veY and p— oo. For each p >0, let u(p)e A be such that
ZiKzl wi(p)e! <vP. Then

lim > i(p)=0, (46)
P ieh(p)

I ((p)=1. 47
lim > wi(p) (47)

ielh(p)
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Proof- Suppose on the contrary that (46) does not hold. Then there
exist a subsequence {p;} with py — co and a constant € > 0 such that
Zielz(pk) wi(pr) =€ for all k. Since |I(py)| < K, there must exist an s €
L(pr) and K C{1,2,...} such that for each k € IC, us(px) > ¢/K holds.

Moreover, since s € Ir(py), we have from (45) that ¢, L v and there exists
te{l,2,...,m} such that ¢y > v,. Thus, by assumption, we have

o> D wi(pel = Y wi(poel) = ue(pclt = (e/K)ely,
iel(pr) ieh(pr)

VkeK. (48)

Let

v.
r:max{—j|cij>vj, jefl, ..., m}, ie{l,...,K}}.
ij

It is clear that t < 1. Then by (48),

v\
t”k><—> >e/K>0, Vkek.

Cst

This contradicts 7 <1 and p; — oo. Thus (46) holds. Since u(p) € A, (46)
implies (47). O

THEOREM 6. There exists po>1 such that
Yp(c)=fi, i=1,....K, (49)

when p > py.

Proof. From (18), we have
fi=wy(c)=y,(c!), VYp>0. (50)

We prove the theorem by contradiction. Suppose that the conclusion of the
theorem does not hold. Then there exists /{1, ..., K} and a sequence {px}
with p; — oo such that

fi=>Vp ("), Vk. (51)
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Let n(pr) be an optimal solution to (42) with y=c/*. Then u(pi) € A and

K
Vel =) mi(pi) fi (52)
i=1
K
> milpel* < (53)
i=1

We claim that w;(py) =0 for any k, i.e., [ €1(p;) for any k, where I(py)
is defined by (43). We note first that w;(pi) # 1, since by (52) w;(pr) =
1 implies ¥, (c/*) = f;, contradicting (51). If 0 < p;(py) <1, then we can
rewrite (53) as Y, Ai(pr)el* <cf¥, where [ (pr) = wi(po)/ (1 — wi(py)) for
i#1 and {;(p;)=0. Thus, a(py) € A and (py) is feasible to (42) with y =
c’*. Moreover, we have

K Pry
Zﬁi(Pk)fi _ Y (ig ) —wi(pi) fi
= — i (pr)
\ (Pr) "
=, (") + %(m ™) = fi). (54)

Since, by (51), fi > ¥, (c/*), (54) implies K o fi < Yy (cl*), con-
tradicting the optimality of w(py).

Now, let I)(pr) and L(pi) be defined in (44) and (45) with v=c¢,, respec-
tively. Let

S=min{f,— filci<c, i#l, iefl,... K}

It follows from the definition of a corner point that ¢; < ¢ and ¢; # ¢
implies f; > f;, and hence § > 0. Since [ € I;(py) for all k, we have

fi>fi+8, Vieli(py), k.
Since wP(Clpk):fl > wpk(clpk)’ we have I(pi) #¢ for all k by Theorem 5.

Applying Lemma 2 with v=c¢;, we conclude that there exists ko such that
when k > ko, I (pr) # 9 holds and

1
D mpOfiz ) mpOfi+ > fit 38, (55)
iel(pr) iel(pr)
1
> P fiz =78 (56)

ieh(pr)
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Combining (52) with (55) and (56) yields

V(=Y wpofi+ Y, wlpf;

ieli(p) ieh(px)
> fi+ Ls_Ls
TRy
1
=fi+-9 (57)
4
for k> ko. Inequality (57) contradicts (51). The proof is completed. O

Let A(p) be a dual optimal solution to (41). Denote the Lagrangian
problem with A=A(p) as:

dp((p)) =min L, (x, A(p)). (58)

Let us consider again Example 1 with »=2.5 in Section | as an illus-
tration of Theorem 6. Figure 3 depicts the functions w, and v, for p=3.
We can see from Figure 3 that condition (49) is satisfied when p=3. It can
be verified that A(3)=—(4—2)/(8—27)=2/19 is an optimal solution to the
dual problem (41) in this example and x*=(1, 1,0, 1)7 can be generated by
the Lagrangian problem (58) when p=3.

The following theorem further shows that the primal feasibility of (58)
and the existence of an optimal primal-dual pair of (39) can be also
ensured when p is larger than a threshold value. Moreover, the partial pth
power reformulation possesses an asymptotic strong duality.

THEOREM 7. (i) There exists py>1 such that there exists at least an opti-
mal solution to (58) that is feasible to (P) when p > p;.

(ii) lim, 6(p)= ™
(iii) For any nmonminferior optimal solution x* of (P), there is p, > p1 such
that there exists one optimal primal-dual pair (x*, *(p)) of (39) when

p = pa.

Proof. We first notice from Theorem 1 (i) that 6(p) =d,(A(p)) =¥, (b").
Let w(p) € A be an optimal solution to (42) with y=»b?. Then

K
V(") =" wi(p) fi, (59)
i=1

K
> wi(p)el <bP. (60)
i=1
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Figure 3. Tllustration of ws(y) and y3(y) for Example 1 with b=2.5.

Let I(p) be defined in (43) and I;(p) and I,(p) be defined in (44) and (45)
with v=>b, respectively. By Lemma 2, we have

lim > wi(p)=0, (61)

g ieh(p)

lim > p(p)=1. (62)
ieli(p)

(1) Note that if I;(p) #9, then for any i € I} (p), by Lemma 1 (ii), there is
x € X satisfying g(x) =c; <b. Moreover, by Theorem 1 (ii), x is an optimal
solution to (58). Thus, it suffices to show that there exists p; >0 such that
Ii(p)#@ when p > p;. Since I,(p) =0 implies I,(p)=1(p)#¥, we assume
L(p) #@. It follows from (62) that I,(p) #@ for sufficiently large p.

(ii) By part (i), I;(p)#@ for p> p;. For any i e I (p), fi=w(c;) Zw(b) =
f* by the monotonicity of the perturbation function w. We obtain from
(59) and (62) that

Yo=Y wi(p)fi+ Y wilp)fi

iel(p) ieh(p)

> wpff=> L pooo. (63)

iel(p)
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On the other hand, the weak duality relation (4) and Theorem 1 (i) give
[ 2dp(h(p) =9, (b"). (64)

Combining (63) with (64) yields part (ii).

(iii)) Notice first that if f; = f* for some i € I;(p), then there exists x*€ S
such that (g(x*), f(x*)=(c;, fi) =(ci, f*). Hence x* is an optimal solution
to (39). By Theorem 1 (ii), x* solves problem (58) and thus (x*, A(p)) is an
optimal primal-dual pair of (39). We now prove that there exists i € I(p)
satisfying f; = f* when p (> py) is sufficiently large. Suppose on the con-
trary there exists a sequence {p;} with py — oo and for each k, f; > f* for
all i e I1(py). Let

S*=min{fi— f*lc;<b, fi#f* iefl,...,K}}>0.

Using the similar arguments as in the proof of (57), we can deduce from
(61) and (62) that

1
O(pi) =Y (™) > f* + 15*
when k is sufficiently large. This, however, contradicts part (ii). O

Next, we study the relationship among the parameters pg, p; and p;,
which are defined in Theorems 6 and 7, respectively. By the definition of
the optimal primal-dual pair, it always holds p; < p,. When m=1, we also
know from Theorems 3 and 4 that p;=1 and p, < py. Thus, for singly con-
strained problems, we have

1=pi1 < p2< po. (65)

The strict inequality p, < po in (65) could hold when condition (49)
is satisfied for ¢; around y =5 and thus there exists an optimal primal-
dual pair, while condition (49) is not satisfied for ¢; far away from y=a.
Consider Example 1 with b =3.5. The perturbation function w(y) and
the convex envelope function ¥ (y) of this problem are illustrated in Fig-
ure 4. It can be verified that the optimal solution of this problem is x* =
(0,0,0,1)T which corresponds to point (3,2)7 in Figure 4. Also, A*=1 is
the optimal solution to (D) and (x*,1*) is an optimal primal-dual pair.
The corner points are (¢;, fi),i = 1, ..., 4, with c; =1, fi=5,c=2, o=
4,c3=3, f3=2,c4=4, f4a=1. Yet ¥(c;)=3.5<4=f,. Hence l=p,=py <
po. It is noticed from Figure 3 that py < 3.
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Figure 4. Illustration of w(y) and ¥ (y) for Example 1 with »=3.5.

For multiply constrained cases, either of the following two cases may
happen:

1 < p1 < p2 < po, (66)
1< po<p1<pa. (67)

Let us consider Example 3 in Section 3 again. The corner points of Example
3are (¢, fi),i =1,...,6, with c; = (4.1231,2.8284) T, f1 =2, c;=(4.3589, )7,
fr=4, c3=(2.8284,4.1231)7, f3=1.5, ¢y = (3.1623,3.1623)T, f, = 3.5,
cs=(1,4.7958)T, fs=0, cs=(2.2361, 3)7, fs =4. It can be verified that

Y(c)=2=fi, Y(c)=4=fr, ¥(c3)=0.6839<1.5=f3,
Yle)=1.6834 <35= fo, Y(cs)=0=fs, ¥(ce)=4=fs.

Note that (c4, f3) corresponds to the optimal solution x*=(1, 1)7.
Applying the partial pth power reformulation to Example 3, it can be
verified that the primal feasibility of the pth power Lagrangian relaxation
problem (58) can be achieved when p >2. However, this is not enough to
guarantee the existence of the optimal primal-dual pair. For instance, take
p =2, we have A(2) =(0.1951,0.3414)7 and the optimal solutions to (58)
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are (0, DT, 2,007, (0,2)" and (2,2)". Thus, (x*, A(2)) is not an optimal
primal-dual pair. We can verify that for p = 2,

i//,,(cf):2:f1, ‘//p(Cg)=4:f2, l/fp(Cg):0.8<1.5:f3,
Yo (cl)=2.6829 <3.5=fy, ¥,(c)=0=fs, ¥,(c))=4=fe.

So, condition (49) is not satisfied. Since ¥,(c}) < fa and (cj, f4) corre-
sponds to the optimal solution x*, there is no OGM vector for x* when
p=2. We can further increase the value of p. When p > 6.3, condition
(49) is satisfied and (x*, A(p)) becomes an optimal primal-dual pair. For
instance, take p=6.3, we have A(6.3)=(0.2874 x 1073,0.3609 x 10~3)” and
the optimal solution to (58) are (0, )7, (1,0)7, (1, DT and (2,2)". There-
fore, we have 1 < p| < p» = py and hence (66) holds in this example.

To show that (67) may happen, let us consider Example 2 in Section
2. Although condition (26) (or (49) with py=1) is satisfied for this exam-
ple, there does not exist an optimal primal-dual pair in the original prob-
lem setting. Applying the partial pth power reformulation to Example 2
with p =3, we make the generation of an optimal primal-dual pair with
A2(3)=1(0.0038,0.0331)" and x*=(1,4)T. Thus, 1=po=p; < p>.

5. Monotonicity of Duality Gap

Let «(p) denote duality gap between the problem (39) (or (1)) and the dual
problem (41): «(p)= f*—6(p). The main result of this section is to show
that «(p) is a strictly decreasing function of p (p >0) for single-constraint
cases of (P).

Let m=1. Assume that points in C, the set of corner point of the per-
turbation function w(y), are in an increasing order: 0 <cy <cy; <--- <cg.
The convex envelope function v, can be expressed as

V,(y)=min{f; +&;(p)(y’ —c/) i <y<cj, 1<i<j<K}, (68)
where
gm=2"0 0 1<i<j<x. (69)
c. —

j i
We need the following lemma.
LEMMA 3. Let
p_gp

np—§8r’

p(p)= p>0, 0<é<y<n. (70)

Then ¢ is a strictly decreasing function on (0, 4+00).
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Proof. Let u=y/§ and v=n/§. By the assumption, we have 1 <u <v.
The function ¢ can be rewritten as

ul —1

v —1°

o(p)=

For any p >0, we have

(= Du?In(u) — ” —Hv? In(v)

@' (p)

(vP —1)2
_u? v”(In(u) —In(v)) +v? In(v) — u? In(u)
B (vP —1)2
u?v?(In(u?) —In(v?)) +v? In(v?) — u? In(u?)
= . (71)
p? —1)?

Let a=u” and B=v”. Then 1 <a <pB. By (71), ¢'(p) <0 if and only if

af(In(a) —In(B)) + BIn(f) —aln(a) <0,

which is in turn equivalent to

? In(e
P n(o <,3—1

In(B). (72)
Now, consider the function

H= ! In(¢), t>1

s =7 n(t), > 1.

We have

/ (t—=1-1In(t))
LA 73
s'(1) TR (73)
Note that In(¢) <t —1 for all r > 1. It follows from (73) that s'(t) > 0 for
all +>1 and hence s is a strictly increasing function on (1, +00). Therefore
(72) holds. O

THEOREM 8. Duality gap «(p) is a strictly decreasing function of p for
p>0.
Proof. By the definition, it suffices to show that ,(b”) is a strictly

increasing function of p. Let 1 <k < K be such that ¢, <b < c¢ry. From
(68), we have
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Y, (bP) =min{ f; + &;(p)(b” — /)| 1 <i <k, k+1<j <K}
fi—fi

P_p
i —¢

=min{ f; + (bP—c)|1<i<k, k+1<j<K;. (74

Since ¢; <c¢x <b <1 <cj, by Lemma 3, (b? — cf’)/(cf — ¢y is a strictly
decreasing function on (0, 4-00). Moreover, f; — f; <0 for i < j. Thus, we
deduce from (74) that v,(b”) is a strictly increasing function of p. O

6. Concluding Remarks

We have presented in this paper new results on the Lagrangian duality the-
ory for general integer programming problems. Fresh insights into some
fundamental properties of Lagrangian duality have been obtained by virtue
of perturbation analysis for integer programming. In particular, we have
derived a necessary and sufficient condition for the existence of an OGM
vector. New solution properties of Lagrangian relaxation problems have
been identified. To ensure the existence of an optimal primal-dual pair, we
have proposed a partial pth power reformulation of the primal problem.
This reformulation ensures primal feasibility of the optimal solution pro-
duced by the dual search and the existence of the optimal primal-dual pair
and possesses an asymptotic strong duality. Monotonicity of duality gap in
the partial pth power reformulation has been proved for single-constraint
cases. Although the monotonicity of «(p) in multiple-constraint cases is
witnessed in numerical experiments, it is still an open question to prove the
monotonicity of duality gap for general multiply constrained cases.
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